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Buffalo spermatozoa are more sensitive for cryopreservation compared to other species.

This study aimed to evaluate the consequences of quercetin against cryodamage of

buffalo frozen–thawed spermatozoa characteristics. Semen of Egyptian bulls (n= 4) was

extended in OptiXcell extender incorporated with quercetin at 0 (control), 2.5, 5.0, 10.0,

20.0, 40.0, and 80.0µM before cryopreservation. Frozen–thawed semen was evaluated

for sperm motility by computer-assisted sperm analyzer (CASA), viability, morphology,

membrane, and acrosome integrities. The kinematics parameters including average

path velocity (VAP; µm/s), straight linear velocity (VSL; µm/s), curvilinear velocity (VCL;

µm/s), amplitude of lateral head displacement (ALH; µm), beat cross frequency (BCF;

Hz), linearity [LIN, (VSL/VCL) × 100], and straightness [STR, (VSL/VAP) × 100] were

assessed. The sperm-free extender was evaluated for aspartate aminotransferase (AST),

alanine aminotransferase (ALT), and H2O2. Homogenized sperm cells were evaluated for

oxidative stress biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione

peroxidase (GPX)], and lipid peroxidation [malondialdehyde (MDA)]. The highest values

of total motility, progressive motility, viability, intact acrosome, and membrane integrity

substantially improved with 10µMof quercetin. STR (%) was substantially low (P< 0.01),

and VCL (µm/s) and ALH (µm) were markedly high (P < 0.05) in 10µM of quercetin. The

outflow of ALT enzyme to extracellular fluid was lower with 10µMof quercetin (P< 0.001)

and higher at 2.5µM of quercetin. The spermatozoa leaked AST was markedly lower

at 5.0, 10 (P < 0.001) and 20µM (P < 0.05) of quercetin. The activity of antioxidant

enzymes was eminently low at all quercetin concentrations, and this was accompanied

by the decrease in H2O2 in the media. SOD activity at 10–80µM, CAT at 5.0–40µM,

and GPX at 2.5–80.0µM of quercetin in spermatozoa were substantially low. MDA level

significantly (P < 0.001) decreased at all quercetin concentrations. In conclusion, the

incorporation of quercetin at the level of 10µM is promising in improving buffalo semen

characteristics and lower the freezing–thawing oxidative stress.
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INTRODUCTION

Semen cryopreservation and its use in artificial insemination are
beneficial policies for prolonged conservation of the hereditary
material of superior bulls. Cryopreservation irreversibly
damages spermatozoa resulting in their dysfunction. Despite
the remarkable success in sperm cryopreservation technology,
there is about a 50% decline in sperm motility after freezing and
thawing (1). The loss in sperm functionality is attributed to the
cryo-damages resulting from the harsh process of freezing and
thawing (2). Several mechanisms have been claimed to be the
main cause of sperm damage during the cryopreservation process
including thermal shock (with intracellular and extracellular ice
formation), cellular dehydration, and osmotic stress (3). It has
been suggested that freezing and thawing of spermatozoa triggers
the production of reactive oxygen species (ROS) (4). Although
moderate levels of ROS are required for successful capacitation,
acrosome reaction, and oocyte fusion (5), their overproduction
during cryopreservation leads to sperm dysfunction (4).

Buffalo spermatozoa are sensitive to lipid peroxidation, as
they contain higher levels of polyunsaturated fatty acid (PUFA)
that entails a nearly equal distribution of saturated (47.8%) and
unsaturated (49.8%) fatty acids (6). The lipid composition of the
sperm plasma membrane has been stated as a major determinant
of viability, motility characteristics, and membrane integrity
(7, 8). Although seminal plasma provided some protection
against peroxidation through its antioxidant’s contents (9),
semen dilution reduces the antioxidant availability for sperm.
Therefore, the incorporation of antioxidants into semen extender
is beneficial (10). Various antioxidants have been supplemented
to different species (11–14) to counteract the adverse effects of
ROS on sperm characteristics.

Quercetin (C15H10O7; molecular weight, 302.236 g/mol) is
a flavonoid antioxidant commonly present in foods such as
fruits and vegetables, able to scavenge reactive species and
hydroxyl radicals (15) as well as provide beneficial health
effects including anticarcinogenic (16), anti-inflammatory (17),
and antimicrobial properties (18). It is composed of two
benzene rings connected by an oxygen-containing pyrene
ring (19). The flavonoids membrane affinity depends on
the side chain length, hydroxylation degree, and molecular
configuration (20). Quercetin with five OH groups has been
found to have a strong membrane interaction (21). The presence
and location of the hydroxyl (–OH) substitutions and the
catechol-type B ring make quercetin an effective antioxidant,
which possesses more intensive ROS scavenger activity than
vitamin E or C (22).

Beneficial antioxidant properties of quercetin on frozen–
thawed semen characteristics have been reported through its
incorporation in semen extenders in different animal species
including bulls (23), horses (3), boars (24), rams (25), and bucks
(26). The need to be added to buffalo spermatozoa is more
critical compared to other species due to the high levels of
PUFA that substantially affect the equal distribution of saturated
and unsaturated fatty acids (6) during the freezing–thawing
processes. This in turn decreases the outcome of the whole
process of cryopreservation.

Previous literature revealed the beneficial effects of quercetin
on parameters of sperm quality (progressive motility and
integrity of sperm plasma membrane, acrosome, and DNA) in
various animal species (23–27). However, kinematics parameters
of sperm, biochemical assessment of oxidative stress biomarkers
in the spermatozoa homogenate, and the sperm free extender
were not investigated in the buffalo semen. The present
study aimed to evaluate the role of quercetin in preventing
the cryodamage to spermatozoa of buffalo bulls in the
OptiXcell extender and to verify its influence on post-thawing
spermatozoa kinematics, semen characteristics, and oxidative
stress biomarkers.

MATERIALS AND METHODS

Semen Collection and Evaluation
Four proven fertile Egyptian native breed buffalo bulls with age of
3.5 ± 1.2 years maintained at El Abbasia Artificial Insemination
Center, Cairo, Egypt, were used in the current study. Semen
samples were collected with an artificial vagina maintained at
42–45◦C for 7 weeks. Two ejaculates were collected from each
bull, one after another, once a week. The time interval between
the first and last ejaculate did not exceed in the worst conditions
30–45min, as the bulls were well-trained and had high libido.
Semen was kept for 10 min in the water bath at 37◦C before
being evaluated for its quality and suitability for extension and
preservation. Sperm activity was assessed microscopically at
100× (mass motility) and 400× (individual motility). Sperm
concentration was measured with the Neubauer hemocytometer.
Good-quality semen samples (motility, livability, and normal
sperm morphology ≥60–65% and sperm concentration ≥900
× 106/ml) from the four bulls were pooled to minimize the
individual variability and to attain adequate semen for triplicates.
Pooled semen (seven replicates) samples were split into aliquots
each of 4ml for further processing.

Semen Processing
Semen samples were extended using the OptiXcell extender
(Ref. 024385, IMV R© United States) to provide a concentration
of nearly 50.0 ± 5.0 × 106 sperms/ml. The extended semen
was divided into seven experimental groups supplemented with
different concentrations of quercetin to the extender (CAS
Number 117-39-5, Sigma-Aldrich, United States) including
0 (control), 2.5, 5.0, 10.0, 20.0, 40.0, and 80.0µM. These
concentrations were selected after three preliminary trials in
which we used different concentrations of quercetin (ranged
from 50 to 200µM) based on previously published works in
bulls, rams, and bucks (2, 25, 28). All concentrations above
100.00µM were found to be toxic to sperm cells and associated
with complete cessation of sperm motility. The extended semen
was slowly cooled (∼2 h) to 4◦C and was mechanically filled
into 0.25ml polyvinyl straws (Minitub, Germany) equilibrated
for 2 h. After that, straws were racked horizontally in a vapor
(5.5 cm above liquid nitrogen, N2) for 10min before dipping
and storage in the liquid N2 until assessing after 1 week. For
evaluation, frozen straws were thawed (n = 5 per each trial per
each concentration) in the water bath at 37◦C for 40 s.
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Post-thawing Frozen Semen Assessment
Assessment of Sperm Motility and Kinematics

Parameters
After thawing, the semen was incubated at 37◦C, and the motility
and kinematic parameters were evaluated using the computer-
assisted sperm analyzer (CASA; Hamilton Thorne, Inc., Beverly,
MA, United States) with a 10× objective at 37◦C. Ten microliters
of extended semen specimens were put onto a pre-warmed
Makler chamber and evaluated. Motility values including total
and progressive motility were recorded in percentages. The
kinematics parameters including average path velocity (VAP;
µm/s), straight linear velocity (VSL; µm/s), curvilinear velocity
(VCL;µm/s), amplitude of lateral head displacement (ALH;µm),
beat cross-frequency (BCF; Hz), linearity [LIN, (VSL/VCL) ×

100], and straightness [STR, (VSL/VAP) × 100] were assessed.
The sperm motilities were calculated with speed standards set as
fast >80 µm/s, medium >60 µm/s, slow >20 µm/s, and static.
For each evaluation, eight microscopic fields were randomly
automatically selected and analyzed by the CASA system.

Assessment of Sperm Viability and Morphology
Slides for sperm viability and morphology were stained
with eosin–nigrosin and examined microscopically at 1,000×
magnification as previously described (29). Morphological
abnormalities were determined as previously ascribed (30), where
spermatozoa (n = 200/slide) were assessed for defects in the tail
region including bent mid-piece, irregular mid-piece, broken tail,
bent tail, coiled tail, and looped tail.

Assessment of Sperm Acrosome Integrity
Acrosomal membrane integrity was assessed using the Giemsa
staining technique as described previously (31) with some
modifications. Briefly, Giemsa stock solution was prepared by
mixing 0.77 g Giemsa’s powder (Merck) with a pre-warmed
(40◦C) 100ml methanol and glycerol mixture (75ml absolute
methanol and 25ml of glycerol) and saturated for 2–3 h
after which the stain was filtered with 0.22µm sterile Millex
(Millipore). The solution was kept at 37◦C in an incubator for
7 days in an amber color bottle with intermittent shaking.

After thawing, semen smears were prepared and air-dried
on clean grease-free slides. The slides were fixed by dipping
into a 5% formaldehyde solution at 37◦C for 30min. After
fixation, the slides were removed out of the solution, washed
under tap water, and air-dried for further processing. The
working solution of Giemsa was prepared by mixing Giemsa’s
stock (3ml), phosphate-buffered saline (PBS) (2ml), and Milli-
Q water (45ml) in a cup and warmed at 37◦C for 30min. The
smeared slides of spermatozoa were dipped into the working
Giemsa solution and kept at 37◦C for 2 h, after which the
slides were removed and washed under tap water and air-dried.
Spermatozoa (n = 200/slide) were examined microscopically at
1,000×magnification to assess the acrosomal intactness.

Assessment of Sperm Plasma Membrane Integrity
The hypoosmotic swelling test (HOS) was used to demark
sperm plasma membrane integrity. The HOS solution (osmotic
pressure ∼190 mOsm/kg) was prepared from sodium citrate

(Merck KGaA, Germany) 0.735 g and fructose (Merck KGaA,
Germany) 1.351 g dispensed in 100ml distilled water. To perform
the assay, the semen sample (100 µl) was mixed with a pre-
warmedHOS solution (900µl) and incubated at 37◦C for 60min.
Swollen and/or curled tails signified an intact plasma membrane,
and accordingly, the percentage of HOS-positive sperms was
calculated (32).

Assessment of Sperm Mitochondrial Activity
By using the 3′3 diaminobenzidine (DAB) assay, spermatozoa
mitochondrial activity was assessed according to Hrudka (33).
Briefly, semen was diluted at a ratio of 1:1 with 1 mg/ml
solution of DAB in PBS and darkly incubated at 37◦C for
1 h. After incubation, semen smears (10 µl) were prepared
on microscope slides and air-dried. The slides were fixed for
10min in 10% formaldehyde, washed, and air-dried again.
Two hundred spermatozoa were counted using a phase-contrast
optical microscope (1,000× magnification), and cells were
classified into four categories: DAB I (100% of the midpiece was
stained), DAB II (>50% of the midpiece was stained), DAB III
(<50% of the midpiece was stained), and DAB IV (absence of
staining in the midpiece).

Semen Preparation for Biochemical
Analysis
Frozen–thawed semen straws (n = 4 per each trial) from
each group were centrifuged at 1,000× g for 20min to
separate spermatozoa from the semen extender. The supernatant
containing the semen extender and seminal fluid was separated,
labeled, and kept at −20◦C until analysis (ALT, AST, H2O2).
The spermatozoa were washed three times by suspending sperm
pellets in an equal volume of cold fresh PBP and washed by
centrifugation at 3,000× g for 10min to remove the remaining
extender and seminal plasma. The pellet was then suspended in
1.5ml of ice-cold 5mM Tris buffer, pH 8.0, and homogenized
with a Polytron homogenizer for 15 s (34). The homogenate of
the pellet was labeled and stored at −20◦C until being assayed
(CAT, GPx, SOD, MDA).

Biochemical Assessment of Spermatozoa-Free

Extender for Enzymes Leakage
The activity of ALT (GPT113100, Egy-Chem for lab technology,
Egypt) and AST (Ref. 260001, Spectrum, Egypt) were determined
in a sperm-free semen extender colorimetrically at 365
and 546 nm, respectively, as it was described elsewhere
(35). H2O2 was determined colorimetrically (at 510 nm)
by the Phenol Red colorimetric method according to da
Silva Maia et al. (36) using a commercial kit (HP 25,
BioDiagnostic, Egypt).

Biochemical Assessment of Oxidative Stress Markers

in Spermatozoa Homogenate
CAT (CA 2517, BioDiagnostic, Egypt), GPX (1.11.1.9, BioAssay
Systems, United States), and SOD (SD 2521, BioDiagnostic,
Egypt) were determined colorimetrically by a commercial
kit as described formerly (37–39) at 520, 340, 560, and
534 nm, respectively. Lipid peroxidation (marked by MDA
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level) was evaluated in the sperm cell homogenate using
commercial kits (MD 2529, BioDiagnostic, Egypt). Lipid
peroxidation in spermatozoa was measured by the reaction
of thiobarbituric acid (TBA) with MDA. The level of MDA
was measured colorimetrically at 534 nm according to Ohkawa
et al. (39).

Statistical Analysis
Parameters were normally distributed using the Kolmogorov–
Smirnov test. Data were tested for homogeneity of variances
using Levene’s test. Data of semen quality parameters (presented
as mean ± SEM, n = 7), HOS (%), tail abnormalities (%),
STR (%), LIN (%), VCL (µm/s), VAP (µm/s), ALH (µm),
ALT (U/L), AST (U/L), H2O2 (mM/L), GPX (U/L), and MDA
(nmol/ml) were analyzed with one-way analysis of variance
(ANOVA) using SPSS (Ver. 23) and multiple comparisons
of the means with Dunnett’s test. Other parameters [total
motility, progressive motility, viability (%), intact acrosome
(%), VSL (µm/s), BCF (Hz), CAT (U/L), and SOD (U/ml)]
showed significant non-homogeneity of variances, and therefore,
they were analyzed using the non-parametric equivalent
of the analysis (Kruskal–Wallis test and post-hoc Dunn
test to compare between treatments). P < 0.05 indicates
statistical significance.

RESULTS

Effect of Quercetin on Sperm Survival
Kinetics and Sperm Kinematics
The post-thawing characteristics of sperm survival kinetics and
kinematics of buffalo were promising with the addition of
quercetin at a rate of 2.5–20µM(Figures 1, 2). The utmost values
of total motility, progressive motility, viability, intact acrosome,
and plasma membrane integrity substantially increased with the
lowest percentage of tail abnormalities in the extender containing
10µM of quercetin. STR (%) was substantially low (P < 0.01),
while VCL (µm/s) and ALH (µm)were markedly high (P< 0.05)
in 10µM of quercetin. The highest concentrations of quercetin
(40 and 80µM) appeared to have a detrimental effect on sperm
velocity parameters including VAP, VSL, and VCL, in addition to
ALH (with 40µM only) and BCF (with 80µM only). Compared
to control, mitochondrial activity showed a significant increase
(P < 0.001) in DAB type I and a decrease (P < 0.01) in DAB
types II and III, but non-significant changes in DAB type IV in
quercetin supplemented groups were observed (Figure 3).

Effect of Quercetin on Extracellular
Transaminase Enzymes Release
A low level of quercetin (2.5µM) was associated with an
obvious (P < 0.001) increase in the escaped ALT enzyme to

FIGURE 1 | The effect of different quercetin concentrations on post-thawing sperm kinematics of Egyptian buffalo spermatozoa as measured by the

computer-assisted sperm analyzer (CASA). The sperm kinematic parameters are total motility % (A), progressive motility % (B), average path velocity (VAP; µm/s) (C),

straight linear velocity (VSL; µm/s) (D), curvilinear velocity (VCL; µm/s) (E), amplitude of lateral head displacement, (ALH; µm) (F), beat cross frequency (BCF; Hz) (G),

linearity (LIN) % (H), and straightness (STR) % (I). The horizontal dotted line delineates the average of the control group. The upper arrowhead (N) indicated a positive

impact. Low arrowhead (H) indicated a negative impact. N, NN, and NNN referred to P < 0.05, P < 0.01, and P < 0.001, respectively. H, HH, and HHH referred to

P < 0.05, P < 0.01, and P < 0.001, respectively.
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FIGURE 2 | The effect of different quercetin concentrations on post-thawing semen characteristics [livability % (A), intact acrosome % (B), the percentage of positive

sperms to the hypoosmotic swelling test (HOS %) (C), and tail abnormalities % (D)] of Egyptian buffalo spermatozoa. The horizontal dotted line delineates the average

of the control group. The upper arrowhead (N) indicated a positive impact. Low arrowhead (H) indicated a negative impact. N and NN referred to P < 0.05 and

P < 0.01, respectively. H, HH, and HHH referred to P < 0.05, P < 0.01, and P < 0.001, respectively.

the extracellular media. Quercetin at a concentration of 10µM
markedly (P< 0.001) decreased the leakage of the ALT enzyme to
sperm-free fluid (Figure 4). The leaked AST outside spermatozoa
wasmarkedly lower at 5.0µM(P< 0.01) and 10µM(P< 0.05) of
quercetin but increased at 2.5µM (P < 0.001), 40µM (P < 0.05),
and 80µM (P < 0.01).

Effect of Quercetin on Oxidative Stress
Markers and Lipid Peroxidation
The activity of antioxidant enzymes was eminently low at all
quercetin concentrations, and this reflected on the decrease in
hydrogen peroxide to the extender (Figure 5). SOD significantly
(P < 0.001) decreased in a dose-dependent manner with
increasing quercetin levels from 5 to 80µM. CAT decreased
at 5.0–40µM of quercetin. GPX also showed the same dose-
dependent decrease pattern as SOD. The levels of H2O2 and lipid
peroxidation (MDA) were significantly (P < 0.001) lowered with
all doses of quercetin compared to control.

DISCUSSION

Although it has great practicality, the cryopreservation process
causes some damages to the sperm cells particularly because
of ROS formation (4) and membrane lipid peroxidation (40),
which have negative effects on sperm fertility parameters
(41). In the present study, we tried to establish the optimal
precooling concentration of quercetin in the extender used for
cryopreservation of buffalo semen. To verify this, we assessed

sperm cell survival and kinematic parameters as well as the
antioxidative status of semen.

Motility of spermatozoa, especially the progressive motility,
and velocity parameters are very important indices for the
efficient fertilizing capacity of spermatozoa in vivo (42). The
present study declared improving effects of quercetin (with
concentration range of 2.5–20µM) on sperm motility (total and
progressive), with the highest values recorded at a concentration
of 10µM. Although sperm kinematics parameters (VSL, BCF,
VCL, VAP, LIN, and VAP) were not changed at quercetin
concentrations ≤20µM, they were dramatically decreased at
high doses of quercetin (40 and 80µM). On the contrary, sperm
VCL and ALH were significantly improved at 10µM quercetin
compared to the control. Our results agreed with that reported
in goats (2). It was revealed in this species that quercetin with
concentration of 10µM improved sperm motility and velocity
parameters. VCL (µm/s) measures the average velocity over the
actual point-to-point track followed by the cell. This parameter is
correlated positively with sperm fertilizing capacity (R2 = 0.67)
(43), in vitro fertilization (44), and pregnancy (45) rates. ALH
or amplitude of lateral head displacement is representing how
fast a helical track segment of the spermatozoon revolves around
its moving axis. The ALH is a measure of the lateral deviations
of the spermatozoa head about its average path of progression
and increases during hyperactivation (46). In addition, a positive
effect of quercetin (at a concentration of 0.1mM) on stallion
spermmotility and velocity parameters was verified (3) compared
to the high concentrations (0.2 and 0.3mM). Moreover, a
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FIGURE 3 | The effect of different quercetin concentrations on the mitochondrial activity as measured by the 3’3 diaminobenzidine (DAB) assay. Cells were classified

into four categories: DAB I (100% of the midpiece was stained) (A), DAB II (more than 50% of the midpiece was stained) (B), DAB III (<50% of the midpiece was

stained) (C), and DAB IV (absence of staining in the midpiece) (D). The horizontal dotted line delineates the average of the control group. The upper arrowhead (N)

indicated a positive impact. Low arrowhead (H) indicated a negative impact. N, NN, and NNN referred to P < 0.05, P < 0.01, and P < 0.001, respectively. H, HH

referred to P < 0.05 and P < 0.01, respectively.

significant improvement was found in frozen–thawed ram sperm
total motility with quercetin concentration at 10µg/ml (47)
and decreased with a higher concentration (50µg/ml). In the
same manner, Winn and Whitaker (42) recorded a significant
improvement of frozen–thawed boar sperm progressive motility
with the lower concentration of quercetin (0.25mM) compared
to higher concentrations (0.50 and 0.75mM). The detrimental
effects of the high concentration of quercetin that was reported
in the present study were similar to those reported in bulls
(28). On the other hand, Tvrda et al. (23) reported that
quercetin concentrations ranging between 50 and 100 µM/L had
a protective effect for bull sperm motility and mitochondrial
activity against injury caused by lipid peroxidation of surplus
ROS. The protective effect of quercetin on sperm motility
may be related to its interaction with Ca2+-ATPase, a key
enzyme involved in the regulation of sperm motility (48). Low
concentrations of intracellular calcium are critical for supporting
sperm motility, possibly by its role in intracellular cyclic
adenosine monophosphate (cAMP) production (49). However,
sustained elevation of calcium may suppress the mammalian
sperm motility by lowering the cAMP concentration and
restricting the ATP supply (50). Quercetin has inhibitory effects
on the plasma membrane Ca2+-ATPase pump (51), resulting
in an elevation of Ca2+ levels. Higher quercetin levels may
induce higher inhibitory effects on the Ca2+-ATPase pump and

higher Ca2+ levels, which adversely affect the sperm motility and
velocity parameters (48).

Mitochondrial status plays an important role in sperm fertility
through its relationship with the energetic status of sperm cells
and motility (52). An inverse correlation has been reported
between mitochondrial membrane potential (MMP) and ROS
levels in frozen–thawed spermatozoa (53). Mitochondria are
the major site of intracellular ROS formation. The coupling
of electron transport with oxidative phosphorylation in sperm
could be disrupted by ROS formation and reduced the number
of sperm with normal mitochondria and sperm motility (54).
Quercetin was demonstrated to be the most efficient compound
in protecting against mitochondrial dysfunction by its ability
to enter the cells and accumulation inside the mitochondria
(55) and controlling the production of ROS by its antioxidant
activity (28).

The integrity of the plasma membrane and viability of
spermatozoa are very important predictors of its fertilizing
capacity in buffalo (56). In the present study, quercetin (2.5–
20µM) had positive impacts on sperm viability and plasma
membrane and acrosome integrities. The effect in the current
study was dose dependent; the highest effect was being
recorded with 10µM, which produced the lowest level of sperm
abnormalities. Our results agreed with that reported in the
stallion semen, mainly with the lowest concentration of quercetin
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FIGURE 4 | The effect of different quercetin concentrations on extracellular

transaminases enzymes leakage [aspartate aminotransferase (AST; U/L) (A),

alanine aminotransferase (ALT; U/L) (B)]. The horizontal dotted line delineates

the average of the control group. The horizontal dotted line delineates the

average of the control group. The upper arrowhead (N) indicated a positive

impact. Low arrowhead (H) indicated a negative impact. N, NN, and NNN

referred to P < 0.05, P < 0.01, and P < 0.001, respectively. H, HH, and HHH

referred to P < 0.05, P < 0.01, and P < 0.001, respectively.

(3). Similar positive effects of quercetin were reported on the
sperm viability in rams (47) and boars (24). On the opposite, high
concentrations of quercetin (40 and 80µM) were unfavorable
to sperm viability and membranes integrities. These findings
may be attributed to the prooxidant ability of the high doses of
quercetin (3). Quercetin possesses the structural components of
being an antioxidant, as it is characterized by a hydroxylation
pattern of 3, 5, 7, 30, and 40 and a catechol B-ring (57, 58).
However, quercetin may be converted into reactive products
during exerting its antioxidant activity (59). It has been reported
that quercetin oxidative degradation results in the formation of
a free radical ortho-semiquinone intermediate, which may be
converted to the parent compound or alternatively to an ortho-
quinone, accompanied by ROS production such as superoxide
and hydrogen peroxide (H2O2) (59). Therefore, the prooxidant
activity of quercetin, particularly at high-dose levels, may be
feasible and should be addressed (58).

The levels of the extracellular-leaked enzymes in the semen
such as transaminase activities (AST and ALT) are good
indicators of semen quality because they measure sperm
membrane stability (60). Therefore, a high rate of sperm
abnormalities causes sperm membrane damage and leakage of
intracellular enzymes from spermatozoa and results in a high
concentration of transaminase enzyme in the extracellular fluid
(61). In the present study, quercetin at concentration 10µM
significantly decreased the level of leaked AST and ALT in
the semen-free extender compared to the control, while the
highest concentrations (40 and 80µM) markedly increased
the AST level compared to the other groups. These findings
were concomitant with the results of membrane integrity and
sperm abnormalities. The highest membrane integrity (at 10µM
of quercetin) preserved AST and ALT from leakage to the
extracellular media; meanwhile, the lowest membrane integrity
(at 40 and 80µM of quercetin) leads to an increase in sperm-free
media contents of ALT and AST.

Generally, the antioxidant system of the cell is composed of
reduced SOD, CAT, glutathione, and glutathione peroxidase (62).
Our results revealed that concentrations (5–40µM) significantly
decreased the level of catalase enzyme and H2O2. In the
present study, the activity of SOD and concentration of GPX
in spermatozoa decreased in all quercetin groups in a dose-
dependent manner. Moreover, the lowest activity of catalase
enzyme and H2O2 concentrations were recorded when the
concentration of quercetin was 10µMcompared to other groups.
The present results were similar to those reported in rabbit semen
(63). Quercetin has been mentioned as a potent antioxidant
because of its ability to inhibit ROS formation by enzymatic and
non-enzymatic systems, especially reduced nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (64) and nicotinamide
adenine dinucleotide (NADH)-dependent oxidoreductase (65)
that localized in the sperm plasma membrane and mitochondria
(66). For lipid peroxidation, the present study revealed decreases
in the levels of MDA in the quercetin groups compared to the
control group. These results agree with that reported in humans
(21), goats (2), rabbits (60), and stallions (67) spermatozoa.
However, no effect of quercetin was found on the MDA level
in frozen–thawed stallion semen (3). In the current study, lipid
peroxidation was assessed by measuring the MDA in sperm
cells (not in the extracellular fluid) to avoid the conflicting
results that might be obtained due to lipid peroxidation of
lipids in the extender. Thus, we assumed the existence of a
direct relationship between the cellular lipid peroxidation and
the intracellular content of quercetin, and we measured the MDA
levels intracellularly.

CONCLUSION

From the present study, we can conclude that quercetin is
a potent antioxidant factor that could protect frozen–thawed
buffalo spermatozoa from lipid peroxidation and oxidative stress.
However, the concentration of quercetin supplementation in
the extenders is a very important factor to be addressed.
Supplementing the extenders with quercetin concentrations
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FIGURE 5 | The effect of different quercetin concentrations on concentrations of some oxidative stress markers [superoxide dismutase (SOD; U/mL) (A), catalase

(CAT; U/L) (B), glutathione peroxidase (GPX; U/L) (C), H2O2 (mM/L) (D), and lipid peroxidation (malondialdehyde (MDA; nmol/mL) (E)]. The horizontal dotted line

delineates the average of the control group. The Low arrowhead (H) indicated a negative impact. H, HH, and HHH referred to P < 0.05, P < 0.01, and P < 0.001,

respectively.

at 5–20µM enhanced sperm motility, velocity parameters,
sperm viability, and membrane integrities and prevented
enzymes’ outflow with marked improvement in the quality
of the frozen–thawed spermatozoa at 10µM concentrations.

However, the highest concentrations of quercetin (≥40µM)
had harmful effects on most of the sperm parameters.
Further investigations are necessary to confirm the fertilizing
potential of sperm cells cryopreserved in quercetin supplemented
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extenders using a biological test such as functional in vitro
fertilization (IVF).
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